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Abstract. The ordering tendency of a lattice gas of angular trimers on the square lattice is
investigated by calculating the entropy, the density and two static orientational susceptibilities,
using transfer matrix methods and a Bethe–Peierls approximation. It is concluded that an order–
disorder phase transition does not occur, and only weak orientational order exists. The lattice
gas of angular trimers is proposed as a two-dimensional model for a glass-forming molecular
liquid like liquid ortho-terphenyl.

1. The model

The tendencies of molecular liquids to form both liquid crystals and glasses depends crucially
on the geometric shape of the constituent molecules. A non-spherical molecular shape may
facilitate the formation of an ordered non-crystalline structure, as occurs in liquid–crystalline
phases. On the other hand, it may impede the process of crystallization so much that a stable
glass can be formed. While a complicated shape of the molecules generally suppresses the
crystallization of a molecular liquid, the question of ordering requires a special investigation.
In this paper such an investigation is carried out theoretically on the level at which molecular
liquids are modelled by lattice gases with units occupying more than one lattice site.

The classic example of such a model is the lattice gas of dimers on the square lattice [1–
9]. Here we examine a lattice gas on the same two-dimensional lattice with units of more
complicated shape, angular trimers (figure 1). The angular trimers represent molecules of
angular shape like ortho-terphenyl (which consists of three benzene rings) [10]. Liquid
ortho-terphenyl is a good glass former because the interlocking of molecules impedes
crystallization. Whether our lattice gas can be considered as a (two-dimensional) model of
such a glass-forming liquid depends on the amount of ordering which occurs in it. A phase
transition into a phase with orientational order at high packing density would disqualify the
model for this purpose. We therefore investigate the tendency for ordering in this lattice gas
by calculating various static quantities which are sensitive to ordering, namely the entropy,
the activity and two different static orientational susceptibilities.

The paper is organized as follows. In section 2 we determine the configurational entropy
at maximum concentrationcmax = 1

3 by calculating for strips of widthW the number of
ways in which the molecules may be arranged in the completely filled lattice. Both periodic
(2 6 W 6 18) and fixed boundary conditions (26 W 6 16) are considered.

The rest of the paper is devoted to systems with varying concentrationc between 0
and cmax. The calculation of the concentrationc as a function of the activityz and the
entropy per lattice sites as a function of the concentration is performed by two different
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Figure 1. The four orientations of angular trimers.
The circles denote the position of the centres of the
molecules.

methods: (i) the transfer matrix method (section 3), and (ii) an extension of the Bethe–
Peierls approximation (section 4). Using the transfer matrix method, in addition two static
susceptibilities with respect to different types of orientation-dependent external fields are
calculated (section 3.3). Section 5 contains the conclusion.

2. The entropy of the full lattice

In this section we calculate the configurational entropy per particles for close-packed
infinitely long strips of widthW . The value for the infinite lattice is obtained by extrapolation
of the entropy to the limitW → ∞.

Following a method due to Fowler and Rushbrooke [11, 12], which they applied to the
dimer problem, we count the number of ways a strip of widthW can be filled completely by
molecules. We consider the first(L − 1) rows of the strip to be completely filled already.
Since the triangular molecules extend over two rows, in general some of the molecules
occupying sites in row(L − 1) stick out into rowL and occupy some sites there. We
denote the configuration of empty and occupied sites in rowL by a. Since it is possible
that no molecule sticks out into rowL, the ‘all-empty’ configuration, which we denote by
a0, must also be taken into account. It is also possible that the molecules sticking into the
Lth row fill this row completely, producing the ‘all-occupied’ configuration of that row. Let
the number of ways in which a general state can be generated beN(W, L; a). For L = 1
we have

N(W, 1; a) = δa,a0 (2.1)

since it is not possible for the molecules to occupy only sites in one row.
By filling all empty sites in theLth row, a certain configuration of empty and occupied

sites is generated in row(L+ 1). We denote this configuration of empty and occupied sites
by a′. The number of ways in which configurationa′ in row (L + 1) can be generated by
filling molecules on the empty sites in configurationa in the Lth row defines a transfer
matrix T (a′, a). If a is the ‘all-occupied’ configuration, no molecule can be added so that
row (L + 1) remains in the ‘all-empty’ configurationa0. This must be counted as one way.
Formally, therefore, ifa is the ‘all-occupied’ configuration,

T (a′, a) = δa′,a0 (2.2)

holds. The number of waysN(W, L + 1; a′) in which the firstL rows of the strip can be
completely filled with configurationa′ of empty and occupied sites on row(L + 1) (and
no occupied sites on row(L + 2)), can now be expressed byN(W, L; a) and the transfer
matrix as

N(W, L + 1; a′) =
∑

a

T (a′, a) N(W, L; a) . (2.3)

For a rectangle of lengthL we therefore get

N(W, L; a′) =
∑

a

(
T L−1

)
a′,a δa,a0 (2.4)
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whereT is a matrix in the space of vacancy distributions of a row with elementsT (a′, a).
It can be shown that the largest eigenvalue of the matrixT determines the configurational
entropy per line in the limitL → ∞.

For the casesW = 2 andW = 3 the eigenvalue problem can be solved analytically, for
larger values ofW the matrixT and its largest eigenvalue were determined by a computer
program. In this program a configurationa of empty and occupied sites is mapped to a
pattern of 0-bits (empty) and 1-bits (occupied) in a computer wordA. Interpreting the bit
pattern as a number, it may be used for the enumeration of the configurations. The filling
procedure starts with imageA of configurationa in the Lth row and imageA′ = 0 of the
configurationa′ in the (L + 1)th, which is empty at the beginning. A particle is inserted
by replacing inA either a 0-bit by a 1-bit or a pair of adjacent 0-bits by a pair of 1-bits,
according to the orientation of the inserted molecule. In the same way that part of the
molecule which belongs to the next row is inserted intoA′. The filling is performed in all
possible distinct ways. For each filledA, i.e. a sequence ofW 1-bits in A, the resultingA′

is recorded, which gives a contribution of 1 toT (a′, a). The largest eigenvalue ofT (a′, a)

is determined by repeated multiplication of an arbitrary starting vector byT (a′, a).
The numerical results for the entropy per lattice site in the case ofperiodic boundary

conditions are presented in the second column of table 1. The values show oscillations with
decreasing amplitude when the width increases. For widthsW > 13 the oscillations are so
small that we may take the value forW = 18 as the limiting value forW → ∞. Thus we
get

s∞ = 0.276 931 50± 0.000 000 05 (2.5)

where the error is estimated from the variation for the five largestW values.
In order to extrapolate the results for the entropy per lattice site forfixed boundary

conditions to the case of strips of infinite width, we assume that the total entropy contains
two contributions: one, which is proportional to the volume, and a second one, which is

Table 1. Entropy per site for completely filled strips of widthW with periodic and fixed
boundary conditions.

Periodic Fixed
Width boundaries boundaries

2 0.346 573 59 0.115 5245
3 0.298 626 58 0.115 5245
4 0.282 001 80 0.156 5662
5 0.275 899 60 0.167 6508
6 0.278 647 80 0.191 7545
7 0.276 810 51 0.200 4126
8 0.276 979 65 0.210 5052
9 0.276 973 35 0.217 7875

10 0.276 937 79 0.223 6694
11 0.276 929 21 0.228 4793
12 0.276 935 44 0.232 5368
13 0.276 931 16 0.235 9397
14 0.276 931 62 0.238 8696
15 0.276 931 62 0.241 4068
16 0.276 931 51 0.243 6270
17 0.276 931 48 —
18 0.276 931 50 —
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proportional to the surface, i.e. the lengthL of the strip:

SW = s∞LW + βL (2.6)

wheres∞ is the entropy per lattice site for a strip of infinite width, and the constantβ has
the meaning of a specific surface entropy. Thus we expect that the entropy per lattice site
sW for strips of finite widthW depends onW according to

sW = s∞ + β

W
. (2.7)

The validity of (2.7) is tested by plotting the values for the entropy per lattice site versus
1/W in figure 2. Taking fors∞ the value obtained from periodic boundary conditions (2.5)
and using only the data for the six largestW values, we find for the surface entropy per
row

β = −0.5329± 0.0001. (2.8)

This contribution is negative, because the surface imposes some orientational order in the
arrangement of the molecules.

For comparison, we calculate the entropy per lattice sitesideal(c) of an ideal lattice gas
of molecules with four different independent orientations, which is given by

sideal(c) = −c ln(c) − (1 − c) ln(1 − c) + c ln(4) . (2.9)

For c = cmax we obtain

sideal(cmax) = ln(3) = 1.099 (2.10)

where the contribution of the entropy of mixing is 0.637 and the orientational entropy is
0.462. The actuals∞ is smaller than either contribution and is only about a quarter of
their sum. Interestingly,s∞ is close to the entropy per site for a square lattice filled with
dimers, which is 0.29 [3, 4]. In view of these similar entropy values we expect that an
order–disorder transition does not occur as for the dimer lattice gas.

Figure 2. Entropy per site for the completely filled lattice as a function of 1/W for periodic
( t) and fixed boundary (◦) conditions. The horizontal line representss∞. The other line has
slopeβ as given by equation (2.8).
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3. The transfer matrix method in general

3.1. The method

In the preceding section we determined the configurational entropy of the full lattice by
a transfer matrix method similar to that used by Fowler and Rushbrooke [11]. Here we
develop a more general transfer matrix method, which admits the calculation of the entropy
for arbitrary densities lower thancmax. Furthermore, this method allows the computation
of susceptibilities with respect to external fields, which depend on the orientation of the
molecules. A molecule can have four different orientations (figure 1).

We calculate the grand canonical partition function for strips of widthW with periodic
boundary conditions. The molecules have activitieszi = eβµi according to their four
orientationsi, whereµi is the corresponding chemical potential.

As in the previous section we consider the firstL rows of the strip and assume in the
Lth row a certain configurationa of empty and occupied sites to be present. The partition
function for such a part of the strip is denoted byZ(W, L; a).

Now we extend the rectangle by one row with configurationa′ of empty and occupied
sites in the(L+1)th row. All molecular configurations in this larger rectangle are obtained
from all molecular configurations of the shorter rectangle with all possible configurations
a of empty and occupied sites in theLth row, by filling in trimers on sites of theLth and
(L + 1)th row, such that the configurationa′ of empty and occupied sites is obtained in the
(L + 1)th row.

If p(n1, n2, n3, n4; a′, a) is the number of different ways in whichni particles with
orientationi (i = 1, 2, 3, 4) may be inserted into a lattice with the configuration of empty
and occupied sitesa in theLth row in order to get the configuration of empty and occupied
sitesa′ in the (L + 1)th row, the transfer matrixT (a′, a) is given by

T (a′, a) =
∑

n1,n2,n3,n4

p(n1, n2, n3, n4; a′, a) z
n1
1 z

n2
2 z

n3
3 z

n4
4 . (3.1)

If a′ is the ‘all-empty’ configurationa0, no particles must be added, so that

T (a0, a) = 1 for all a . (3.2)

If a is the ‘all-occupied’ configuration, relation (2.2) holds again. In computational work it
is convenient to determine thep(n1, n2, n3, n4; a′, a) only once and to store them for the
computation ofT (a′, a) according to equation (3.1).

The partition functionZ(W, L; a) obeys the recursion relation

Z(W, L + 1; a′) =
∑

a

T (a′, a) Z(W, L; a) . (3.3)

Since forL = 1 the only configuration is the ‘all-empty’ configuration, we get

Z(W, 1; a) = δa,a0 . (3.4)

Because of the periodic boundary conditions, some of the configurations of empty and
occupied sites are obtained from one another by cyclic permutations. The corresponding
partition function is not affected by such a transformation. Selecting from each set of
configurations of empty and occupied sites, which are obtained from one another by cyclic
permutations, a representativeā, and denoting the corresponding set of configurations of
empty and occupied sites byS(ā), one can write equation (3.3) as

Z(W, L + 1; ā′) =
∑

ā

( ∑
a∈S(ā)

T (ā′, a)

)
Z(W, L; ā) . (3.5)
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Defining the matrix

T (ā′, ā) =
∑

a∈S(ā)

T (ā′, a) (3.6)

the recursion relation (3.3) may be rewritten as

Z(W, L + 1; ā′) =
∑

ā

T (ā′, ā) Z(W, L; ā) . (3.7)

The total partition function is given by

Z(W, L) =
∑
ā′

∑
a′∈S(ā′)

Z(W, L; a′) . (3.8)

In the limit L → ∞ we get

Z(W, L) = A λ(z1, z2, z3, z4)
L (3.9)

whereA is a constant andλ(z1, z2, z3, z4) is the largest eigenvalue of the matrixT (ā′, ā).
Hence we obtain in the thermodynamic limit

p

kB T
= lim

L→∞
ln(Z(W, L))

W L
= ln(λ(z1, z2, z3, z4))

W
. (3.10)

3.2. Calculation of the concentration and the entropy

From the expression (3.10) the concentrationci of the particles with orientationi can be
calculated by numerical differentiation:

ci = lim
L→∞

zi

∂

∂zi

ln(Z(W, L))

W L
= zi

∂

∂zi

ln(λ(z1, z2, z3, z4))

W
. (3.11)

However, the concentration can also be derived in a different way, if the eigenvector
belonging to the largest eigenvalue is available. This is the case in our calculation. Since
T (ā′, ā) is not a symmetric matrix, there are in fact two eigenvectors, a right onevR(ā)

and a left onevL(ā′) for the same largest eigenvalueλ, which fulfil the relations

λ vR(ā′) =
∑

ā

T (ā′, ā) vR(ā) (3.12)

λ vL(ā) =
∑
ā′

T (ā′, ā) vL(ā′) . (3.13)

The eigenvectors are supposed to be normalized, so that∑
ā

vL(ā) vR(ā) = 1 . (3.14)

With this assumption we get

zi

∂

∂zi

λ(z1, z2, z3, z4)= zi

∂

∂zi

∑
ā′,ā

vL(ā′) T (ā′, ā) vR(ā)

=
∑
ā,ā′

vL(ā)

(
zi

∂

∂zi

T (ā, ā′)
)

vR(ā′) (3.15)

where the remaining terms cancel to 0 because of the relations (3.12)–(3.14). According
to equation (3.1) the derivativezi

∂
∂zi

T (ā′, ā) can be performed analytically. Since the
probabilities p(n1, n2, n3, n4; ā′, a) are purely combinatorial and do not depend on the
activitieszi , we get

zi

∂

∂zi

T (ā′, ā) =
∑

a∈S(ā)

∑
n1,n2,n3,n4

p(n1, n2, n3, n4; ā′, a) z
n1
1 z

n2
2 z

n3
3 z

n4
4 ni . (3.16)
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The concentrationc as a function ofu = z/(1 + z) with z = z1 = z2 = z3 = z4 has
been calculated for strips of widthW from 3 to 11. The result forW = 11 is shown in
figure 3. Within the resolution of the figure the results forW = 9 andW = 10 cannot be
distinguished. So we may take this figure also for the limiting caseW → ∞.

Figure 3. Concentration as a function ofu = z/(z +1) calculated by the transfer matrix method
for a strip of widthW = 11. Within the resolution of the graph there is no difference to the
results forW = 9 andW = 10. The results from the Bethe–Peierls approximation (section 4)
are represented as circles. They also coincide within the resolution of the graph.

Note that the slope of the curves atu = 1 is ∞. Near to this singularity we find

1
3 − c(u) ∝ (1 − u)1/3 . (3.17)

As can be seen from figure 3 the curves agree remarkably well with the data, which are
obtained from the Bethe–Peierls approximation (see section 4), which are drawn as circles.

The entropy per lattice sites(c) is related to the largest eigenvalue by

s = kB

(
1

W
ln(λ(z1, z2, z3, z4))|z1=z2=z3=z4=z − c ln(z)

)
(3.18)

which is obtained from equation (3.10). The entropy per lattice site as a function of the
concentrationc of a strip of widthW = 11 is shown in figure 4. For low densities the
entropy is an increasing function of the concentration. Abovec ≈ 0.22 the entropy decreases
with increasing concentration and drops to its final value atc = cmax, which was calculated
independently in section 2. Again, there is no visible difference to the casesW = 9 and
W = 10, so that we take this figure again as the limiting caseW → ∞. In order to
compare this result to the entropy of an ideal lattice gas in which the molecules may have
four independent orientations (equation (2.9)) we show the reduced entropysred = s/sideal in
the inset. As is expected this function starts with 1 at low densities. It drops to about1

4 at
the maximum concentration. As was already stated in the previous section this value implies
an appreciable degree of disorder, so that we do not expect an ordering phase transition.
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Figure 4. Entropy per lattice site as a function ofc calculated by the transfer matrix method
for a strip of widthW = 11. Within the resolution of the graph there is no difference between
the results forW = 9 andW = 10. The circle atcmax markss(cmax) as derived in section 2.
The inset shows the reduced entropysred(c), which is explained in the text.

3.3. Calculation of the susceptibilities

More reliable information about a tendency towards an ordering phase transition is available
from the susceptibilities. They are calculated by applying weak external fieldsAi to the
molecules according their orientationi. The response of the densities of the corresponding
particles, due to the changes of the potential energy, determines the susceptibility. However,
there is the constraint that the total density must not be changed.

Among the various possibilities of defining susceptibilities two special cases are selected:
(i) The molecules are considered as acting like electric dipoles in an electric field.

The particles with one specified orientation (e.g. orientation 1) experience a rise of energy
A, when the external field is applied, whereas the energy of the particles with opposite
orientation (orientation 3) is decreased by the same amount. The energy of the remaining
particles is not affected.

In this case the total density is not changed to linear order of the perturbing field.
The quantityM1 = c1 − c3 plays the role of the ‘magnetization’ per volume, so that the
susceptibility per particle is given by

kB T χ1 = 1

c

(
∂M1

∂A

)
A=0

. (3.19)

In figure 5 we present the results forχ1(c) for a strip of widthW = 11. The curves for
W = 9 andW = 10 differ only slightly from those for the caseW = 11.

We may attribute an orientation variableσ (1)
n to the sitesn which is 0 for empty sites,

1 if the site is occupied by a molecule of orientation 1,−1 if it is occupied by a molecule
of orientation 3, and 0 otherwise. In terms of this orientational variable the activity of a
particle at siten may be expressed as

z(n) = ze−βσ
(1)
n A . (3.20)
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Figure 5. χ1 as a function ofc calculated by the transfer matrix method for a strip of width 11.

In this case the susceptibilityχ1 can be expressed as

kBT χ1 = 1

c V

∑
n,m

〈σ (1)
n σ (1)

m 〉 = 1

2
+ 2

c V

∑
n>m

〈σ (1)
n σ (1)

m 〉 . (3.21)

Here the first term〈(σ (1)
n )2〉 = 1

2 representskBT χ1 in the absence of orientational
correlations. The second term is due to correlations. Since it is negative, the correlations are
predominantly negative. In the case of close packing the reduction is largest and amounts
to about 30%. Assuming that orientational correlations decrease rapidly with molecular
distance, we conclude that pairs of antiparallel molecules with nearest neighbour (figure 6a)
and next-nearest neighbour position of their centres occur more frequently than pairs of
parallel molecules with next-nearest neighbour position of their centres (figure 6b). At the
maximum concentration pairs of antiparallel molecules with next-nearest neighbour position
of their centres do not exist.

Figure 6. Nearest (a) and next-
nearest neighbour configurations (b, c,
d) of angular trimers. In configuration
a the molecules are antiparallel, in
configuration b they are parallel.

(ii) We assume that molecules with either of two opposite orientations (e.g. orientations
1 and 3) gain the energyA in an external field, so that we have

z1 = z3 = z2e−βA z2 = z4 . (3.22)

This perturbation is analogous to the interaction of electric quadrupoles with an electric
field gradient.

In order to keep the total density fixed, the activityz must be appropriately chosen.
With

z1 = z3 = ze−βA/2 z2 = z4 = zeA/2 (3.23)
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Figure 7. χ2 as a function ofc calculated by the transfer matrix method for strips of width
W = 9, 10, 11.

there is no change in the concentration to first order inA. The ‘magnetization’M2 per
volume in terms of the partial concentrations is defined asM2 = c1 + c3 − c2 − c4. The
susceptibilityχ2 per particle is thus obtained as

kBT χ2 = 1

c

(
∂M2

∂A

)
A=0

. (3.24)

In figure 7 we present the results forkBT χ2(c) for strips of widthW = 9, 10 and 11. A
small dependence on the width is observable, indicating that the susceptibility is a more
sensitive quantity than the concentration or entropy. For the interpretation of this result we
attribute to a siten a second ‘orientational’ variableσ (2)

n , which is 0 for unoccupied sites,
1 if there is a molecule with either orientation 1 or 3, and−1 otherwise. In terms of this
orientational variable the activity of a particle at siten may be expressed as

z(n) = ze−βσ
(2)
n A/2 . (3.25)

For the susceptibility per particle we then obtain

kBT χ2 = 1

2c

1

V

∑
n,m

〈σ (2)
n σ (2)

m 〉 = 1

2
+ 1

cV

∑
n>m

〈σ (2)
n σ (2)

m 〉 . (3.26)

The first term〈(σ (2)
n )2〉 giveskBT χ2 in the absence of correlations. HerekBT χ2 is enhanced

as a result of positive orientational correlations. The enhancement amounts to a maximum
of about 20% at close packing. Again we assume that the orientational correlations are
appreciable only for nearest and next-nearest neighbour molecules. Now both configurations
figure 6a and b yield positive contributions. Negative contributions are obtained from the
next-nearest neighbour configurations shown in figures 6c and d. We conclude from the
result for χ2 that configurations a and b have larger statistical weight than configurations
c and d. From case (i) we already know that configuration 6a is more frequent than
configuration b. The predominance of configuration a is also confirmed by direct inspection
of randomly generated configurations.
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4. The Bethe–Peierls approximation

In this section we use quite a different approach for the determination ofc(z) than in the
previous ones. We apply a mean-field method, which is a generalization of the Bethe–Peierls
approximation. (For a similar treatment of a simpler problem without an orientational degree
of freedom see [13].)

The possible positions of the centres of the molecules, which are indicated in figure 1,
also form a square lattice. From this lattice we consider an arbitrary 3× 3 cluster. To each
site we attribute an activity, which may also depend on the orientation of the occupying
molecule, and determine the grand canonical partition function for this cluster by summing
over all allowed configurations.

The centre site is attributed the true activityz0 = z. For the rest of the cluster sites we
assume that the effective activity deviates from this value because of the influence of the
surrounding lattice. Since the influence of the surrounding lattice depends on the position
within the cluster, we assume different effective activities for all sites and orientations which
are not symmetrically equivalent. We therefore are led to introduce five different effective
activities: two for the nearest-neighbour sites and three for the next-nearest neighbour sites.

The partition functionZcl can be expressed in terms ofz and the as yet unknown
effective activitiesz1, . . . , z5. The result is a polynomial of degree 4 in the six activities
consisting of 105 additive terms.

From the thermodynamic relation

〈ni〉 = zi

Zcl

∂Zcl

∂zi

for i ∈ {0, 1, 2, 3, 4, 5} (4.1)

the average number of particles in the cluster corresponding to the effective activityzi can
be calculated. Since the lattice is homogeneous, the concentration of the particles of any
orientation should be equal for all sites. Applying this requirement to the sites of the cluster,
is the basic idea of the Bethe–Peierls approximation. With this condition〈ni〉 is related to
the concentration by

〈ni〉 = γi

c

4
(4.2)

whereγ0 = 1, γ1 = γ2 = 2, γ3 = γ4 = 1 andγ5 = 2 are the number of symmetrically
equivalent sites and orientations in the cluster. From the equations (4.1) and (4.2) we get
six independent equations from which the effective potentials andz0 = z can be determined
self-consistently for a givenc. Thus the equations (4.1) and (4.2) establish the relationc(z).
The results for the concentration as a function ofu = z/(z + 1) are presented in figure 3 as
circles. Within the resolution of the graph they are equal to those obtained by the transfer
matrix method. The entropy per lattice site may be derived fromc(z) by the thermodynamic
relation

s(z) = kB

(∫ z

0
dz′ c(z

′)
z′ − c(z) ln(z)

)
. (4.3)

Because of the good agreement between the curves forc(z) from the transfer matrix method
and the Bethe–Peierls approximation in figure 3, the curves fors(c) are also the same.

Since mean-field theories neglect long-range correlations, the good agreement of the
results implies that long-range correlations are not relevant for the thermodynamics of the
system.
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5. Conclusion

In this paper we calculated by transfer matrix methods various static quantities characterizing
the short-range order in the lattice gas of angular trimers on the square lattice (sections 2
and 3). As an alternative method a Bethe–Peierls approximation is also applied (section 4).
Quantities calculated are the entropy per lattice site as a function of concentration, the
concentration as a function of the activity, and two static susceptibilities for orientational
ordering of dipolar and quadrupolar type. The results obtained by the different methods
are in very good agreement with one another and with Monte Carlo data. They show that
the ordering tendency is but weak. No indication of an order–disorder phase transition
is observed. The existing short-range order is dominated by the occurrence of pairs of
antiparallel trimers in nearest-neighbour positions, which form close-packed rectangular
units (figure 6, configuration a). For the full lattice the entropy per site is found to be close
to the corresponding value for the dimer problem, where an order–disorder phase transition
is known to be absent [8, 9].

We conclude that the lattice gas of angular trimers may be considered as a model of a
glass-forming liquid composed of molecules of angular shape like liquid ortho-terphenyl.
It would be of interest to extend the model to three dimensions and to study dynamic
properties.
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